Uranium compound achieves record anomalous Nernst conductivity
heat into an electric voltage. This thermoelectric phenomenon can be exploited in devices that generate electricity from a heat source. The most notable current example is the radioisotope thermoelectric generators (RTGs) that were developed in part at Los Alamos. RTGs use heat from the natural radioactive decay of plutonium-238 to generate electricity—one such RTG is currently powering the Perseverance rover on Mars.

“What’s exciting is that this colossal anomalous Nernst effect appears to be due to the rich topology of the material. This topology is created by a large spin-orbit coupling, which is common in actinides,” Ronning said. “One consequence of topology in metals is the generation of a transverse velocity, which can give rise to a Nernst response as we observe. It can also generate other effects such as novel surface states that may be useful in various quantum information technologies.”

The uranium system studied by the Los Alamos team generated 23 microvolts per kelvin of temperature change—four times bigger than the previous record, which was discovered in a cobalt-manganese-gallium alloy a couple of years ago and also attributed to these sorts of topological origins.

More information:
T. Asaba et al, Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet, Science Advances (2021). DOI: 10.1126/sciadv.abf1467

Uranium compound achieves record anomalous Nernst conductivity (2021, March 26)
retrieved 27 March 2021
from https://phys.org/news/2021-03-uranium-compound-anomalous-nernst.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Leave a Reply

Your email address will not be published. Required fields are marked *